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I. Moduli stacks of vector bundles

Definition
A vector bundle (over a scheme X ) over a field k is a scheme E
together with a map π : E → X of schemes such that π is locally trivial
in the (Zariski) topology, i.e. there is a (Zariski) open covering {Ui}i∈I
of X and isomorphisms

φi : π
−1(Ui)

∼=→ Ui × An
k

such that for every pair i , j ∈ I there is a morphism, a transition
function

φij : Ui ∩ Uj → GLn(k)

such that φiφ
−1
j (x , v) = (x , φij(x)v) for all x ∈ Ui ∩ Uj and v ∈ An

k .

n = rk(E) is the rank of E . If rk(E) = 1, then E is a line bundle.
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I. Moduli stacks of vector bundles

Definition
Let π : E → X be a vector bundle of rank n with trivializations
(Ui , φi , φij) and π′ : E ′ → X be a vector bundle of rank n′ with
trivializations (U ′i , φ

′
i , φ
′
ij). A morphism of vector bundles f : E → E ′ is

given by a commutative diagram

E f //

π ��?
??

??
??

? E ′

π′
��~~
~~
~~
~~

X

such that for every pair i , j ∈ I there is a morphism

fij : U ′i ∩ Uj → Matn×n′(k)

such that φ′i fφ
−1
j (x , v) = (x , fij(x)v) for all x ∈ U ′i ∩ Uj and v ∈ An

k .



I. Moduli stacks of vector bundles

Definition
A vector bundle is trivial if it is isomorphic to pr1 : X × An

k → X .

Definition
The degree deg(E) of a vector bundle E over an algebraic curve X is
the degree of divisor of the determinant line bundle det(E) = Λrk(E)(E),
i.e. deg(E) = dimH0(X , E)− dimH1(X , E)− rk(E)(1− g).

Remark. Have also more general bundles like principal G-bundles,
i.e. a fiber bundle where the total space E has an action of an algebraic
group G, which for G = GLn(k) corresponds to vector bundles.
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I. Moduli stacks of vector bundles
Definition
Let X be a scheme over a field k and G an affine algebraic group over
k . A G-fibration over X is given by a scheme P, an action
ρ : P ×G→ P and a G-equivariant morphism π : P → X . A
morphism between two G-fibrations π : P → X and π′ : P ′ → X is
given by a morphism f : P → P ′ such that π = π′ ◦ f , i.e. by a
commutative diagram

P f //

π ��?
??

??
??

? P ′

π′
~~~~
~~
~~
~~

X

A G-fibration is called trivial if it is isomorphic to the G-fibration
pr1 : X ×G→ X , where the action is given by

ρ : (X ×G)×G→ X ×G, ρ((x ,g),g′) = (x ,gg′).



I. Moduli stacks of vector bundles

A principal G-bundle is now simply a locally trivial G-fibration. But it is
important to specify local triviality with respect to a given topology:

Definition
Let X be a scheme over a field k and G an affine algebraic group over
k . A principal G-bundle in the Zariski (resp. étale... ) topology is a
G-fibration P which is locally trivial in the Zariski (resp. étale ... )
topology. This means that for any point x ∈ X there is a neighborhood
U of x such that P|U is trivial in the Zariski topology, resp. there is an
étale ... covering U ′

φ→ U such that the fibre product

φ∗(P|U) ∼= U ′ ×U P|U

is trivial.



I. Moduli stacks of vector bundles

Aims:

We want to “classify” vector bundles E (resp. principal G-bundles
P) on a given smooth projective algebraic curve X over a finite
field Fq up to their symmetries, i.e. bundle isomorphism.
We want to “count” the number of isomorphism classes of these
vector bundles E (resp. principal G-bundles P), i.e. need to
determine the number of Fq-rational points of some moduli
“space”, whose points corresponds to the isomorphism classes of
the vector bundles.

Ingredients:
Need to calculate the l-adic cohomology of this moduli “space” of
vector bundles (resp. principal G-bundles P) on X and use
Lefschetz type trace formula to count isomorphism classes via
counting points of the associated moduli “space”!
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I. Moduli stacks of vector bundles

Moduli Problem [Philosophy]
Question: How to classify geometric objects (e.g. differentiable
manifolds, algebraic varieties, schemes, vector bundles, principal
G-bundles etc.) up to their symmetries (i.e. isomorphisms)?

Strategy:
▶ Construct a geometric object (e.g. topological space, differentiable

manifold, fibrations, foliations, algebraic variety, scheme etc.) such
that its set of points corresponds bijectively to the set of
isomorphism classes of the geometric objects we want to classify.

▶ Construct a universal object inside the class of geometric objects
we want to classify, such that all other geometric objects inside the
class can be obtained from this universal object in a systematic
manner.



I. Moduli stacks of vector bundles

Moduli Problem [Philosophy]
Question: How to classify geometric objects (e.g. differentiable
manifolds, algebraic varieties, schemes, vector bundles, principal
G-bundles etc.) up to their symmetries (i.e. isomorphisms)?

Strategy:

▶ Construct a geometric object (e.g. topological space, differentiable
manifold, fibrations, foliations, algebraic variety, scheme etc.) such
that its set of points corresponds bijectively to the set of
isomorphism classes of the geometric objects we want to classify.

▶ Construct a universal object inside the class of geometric objects
we want to classify, such that all other geometric objects inside the
class can be obtained from this universal object in a systematic
manner.



I. Moduli stacks of vector bundles

Moduli Problem [Philosophy]
Question: How to classify geometric objects (e.g. differentiable
manifolds, algebraic varieties, schemes, vector bundles, principal
G-bundles etc.) up to their symmetries (i.e. isomorphisms)?

Strategy:
▶ Construct a geometric object (e.g. topological space, differentiable

manifold, fibrations, foliations, algebraic variety, scheme etc.) such
that its set of points corresponds bijectively to the set of
isomorphism classes of the geometric objects we want to classify.

▶ Construct a universal object inside the class of geometric objects
we want to classify, such that all other geometric objects inside the
class can be obtained from this universal object in a systematic
manner.



I. Moduli stacks of vector bundles

Moduli Problem [Philosophy]
Question: How to classify geometric objects (e.g. differentiable
manifolds, algebraic varieties, schemes, vector bundles, principal
G-bundles etc.) up to their symmetries (i.e. isomorphisms)?

Strategy:
▶ Construct a geometric object (e.g. topological space, differentiable

manifold, fibrations, foliations, algebraic variety, scheme etc.) such
that its set of points corresponds bijectively to the set of
isomorphism classes of the geometric objects we want to classify.

▶ Construct a universal object inside the class of geometric objects
we want to classify, such that all other geometric objects inside the
class can be obtained from this universal object in a systematic
manner.



I. Moduli stacks of vector bundles
Moduli Problem [Mathematics]
A Case Study: Moduli of vector bundles on algebraic curves

Moduli Functor
X/Fq = smooth projective curve of genus g over the field Fq

Mn,d
X = contravariant functor, i.e. presheaf of sets

Mn,d
X : (Sch/Fq)

op → (Sets)

▶ (objects) S 7→ Mn,d
X (S) = set of iso classes of vector bundles

E ↓ X × S of rank n and degree d on X × S
▶ (morphisms) maps of sets induced by pullback of vector bundles,

i. e. (f : S′ → S) 7→ (f ∗ :Mn,d
X (S)→Mn,d

X (S′))

(idX × f )∗E //

��

E

��
X × S′ idX×f // X × S
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I. Moduli stacks of vector bundles

Moduli problem
Question: Is the moduli functorMn,d

X representable, i. e. is there
a scheme Mn,d

X (= fine moduli scheme) s. th. for all schemes S
there is a bijective correspondence of sets

Mn,d
X (S) ∼= Hom(Sch/Fq)(S,M

n,d
X )?

If Mn,d
X exists, have especially

Mn,d
X (Spec(Fq)) ∼= Hom(Sch/Fq)(Spec(Fq),M

n,d
X ),

i. e. iso classes of vector bundles over X correspond to points of
Mn,d

X .
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I. Moduli stacks of vector bundles

If Mn,d
X exists, have especially also

Mn,d
X (Mn,d

X ) ∼= Hom(Sch/Fq)(M
n,d
X ,Mn,d

X ).

Let Euniv ↓ X ×Mn,d
X ∈Mn,d

X (Mn,d
X ) object corresponding to

morphism idMn,d
X

.

Euniv ↓ X ×Mn,d
X universal family of vector bundles, i. e. for any

vector bundle E ↓ X × S there is a unique morphism f : S → Mn,d
X

s. th. E ∼= (idX × f )∗(Euniv )

E ∼= (idX × f )∗Euniv //

��

Euniv

��

X × S
idX×f // X ×Mn,d

X



I. Moduli stacks of vector bundles

Problem: Mn,d
X is not representable, because vector bundles

have non-trivial automorphisms, e. g. scalar multiplication i.e.
Gm ⊂ Aut(E).

Question: Are there ways out of this dilemma?
▶ Restrict class of vector bundles to eliminate automorphisms, i. e.

rigidify moduli problem (e. g. moduli problem for semi-stable and
stable vector bundles...) and use weaker notion of representability
(e. g. coarse moduli scheme...)
Geometric Invariant Theory (GIT): Mumford, Narasimhan,
Seshadri, Ramanan, Gieseker...

▶ Record information about automorphisms by organizing moduli
data differently, i. e. enlarge category of schemes to ensure
representability
Algebraic stacks: Grothendieck, Giraud, Deligne-Mumford,
Artin,...

Slogan. Using stacks gives a categorification of the moduli problem!
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I. Moduli stacks of vector bundles

Moduli stacks
X/Fq = smooth projective curve of genus g over the field Fq

Bunn,d
X = presheaf of groupoids, i. e. lax 2-functor,

pseudofunctor

Bunn,d
X : (Sch/Fq)

op → (Groupoids)

▶ (objects) S 7→ Bunn,d
X (S) = category with

⋆ objects: vector bundles (= locally free sheaves) E ↓ X × S of rank n
and degree d on X × S

⋆ morphisms: vector bundle isomorphisms
▶ (1-morphisms) functors induced by pullbacks of vector bundles,

i. e. (f : S′ → S) 7→ (f ∗ : Bunn,d
X (S)→ Bunn,d

X (S′))
▶ (2-morphisms) natural isomorphisms between pullback functors,

i. e. (S′′ g→ S′ f→ S) 7→ (ϵf ,g : g∗ ◦ f ∗ ∼= (f ◦ g)∗)
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I. Moduli stacks of vector bundles

Question: We like to glue local data so need a ’sheaf of groupoids’.

Grothendieck topology
a category C: objects U ”open sets”
a collection of morphisms in C with same target: {Ui → U}i∈I
”coverings” s. th.

▶ Isomorphisms Every isomorphism {U ′ ∼=→ U} is a covering.
▶ Transitivity Coverings of coverings are coverings, i. e. if {Ui

pi→ U}
covering and {Uij

pij→ Ui} covering, then also {Uij
pi◦pij→ U} covering.

▶ Base change Coverings respect base change, i. e. if {Ui
pi→ U}

covering, V → U morphism, then {V ×U Ui → V} covering.

A category C with a Grothendieck topology is a site denoted by Cτ .
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I. Moduli stacks of vector bundles
Example. Smooth topology on category of schemes
(Sch/B)sm = smooth site of schemes over a fixed base scheme
B

▶ objects: p : U → B smooth morphisms of schemes
▶ morphisms: commutative diagrams of the form

V f //

q ��?
??

??
??

? U

p����
��
��
��

B

▶ coverings: commutative diagrams of the form

Ui
pi //

��?
??

??
??

U

����
��
��
��

B

s. th. U =
∐

i∈I pi(Ui)



I. Moduli stacks of vector bundles

Definition
A stack is a sheaf of groupoids over the smooth site (Sch/B)sm, i. e. a
presheaf

X : (Sch/B)op → (Groupoids)

satisfying sheaf axioms for coverings {Ui → U} in (Sch/B)sm:

(Glueing of objects)
If Xi are objects of X(Ui), ϕij : Xj |Ui ×U Uj → Xi |Ui ×U Uj
morphisms satisfying the cocycle condition

ϕij |Ui ×U Uj ×U Uk ◦ ϕjk |Ui ×U Uj ×U Uk = ϕik |Ui ×U Uj ×U Uk

then there exists object X of X(U) and morphisms ϕi : X |Ui
∼=→ Xi

with
ϕji ◦ ϕi |Ui ×U Uj = ϕj |Ui ×U Uj
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I. Moduli stacks of vector bundles

Definition (contin.)
(Glueing of morphisms)
If X and X ′ are objects of X(U), ϕi : X |Ui → X ′|Ui morphisms with

ϕi |Ui ×U Uj = ϕj |Ui ×U Uj

then there exists morphism η : X → X ′ with

η|Ui = ϕi .

(Monopresheaf)
If X and X ′ are objects of X(U), ϕ : X → X ′, ψ : X → X ′

morphisms with
ϕ|Ui = ψ|Ui

then ϕ = ψ.
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Definition (contin.)
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If X and X ′ are objects of X(U), ϕi : X |Ui → X ′|Ui morphisms with

ϕi |Ui ×U Uj = ϕj |Ui ×U Uj
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I. Moduli stacks of vector bundles
(Morphisms of stacks)
F : X→ Y given by functors F ∗S : Y(S)→ X(S) for any S and

natural transformations F ∗f : f ∗ ◦ F ∗S
∼=→ F ∗S′ ◦ f ∗ for any f : S′ → S.

(Every sheaf is a stack)
Any sheaf F : (Sch/B)op → (Sets) is a stack by considering the
sets F (S) as groupoids.
(Grothendieck) Any scheme S is a stack given as the sheaf
S := Hom(Sch/B)(−,S).
(Representable morphisms of stacks)
F : X→ Y representable if for any morphism Y → Y the fibred
product X×Y Y is a stack isomorphic to a scheme S, i. e. to the
stack S = Hom(Sch/B)(−,S)

X×Y Y //

��

X

��
Y // Y
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I. Moduli stacks of vector bundles
(2-Yoneda Lemma)[Giraud, Hakim]
Let X be a stack over (Sch/B) and S a scheme. There is an
equivalence of categories

θ : HomStacks(S,X)
∼=→ X(S), (f : S → X) 7→ f (idS)

Definition
A stack over the smooth site (Sch/B)sm

X : (Sch/B)op → (Groupoids)

is an algebraic stack if
∆ : X→ X× X is representable, quasi-compact and separated
there is a scheme X (atlas) together with smooth surjective
morphism x : X → X
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I. Moduli stacks of vector bundles
Quotient Problems.

X = smooth (noetherian) scheme over Fq, G = smooth affine
algebraic group over Fq with a free action ρ : G × X → X .
Then we have:

(i) The quotient X/G exists as a scheme and the quotient morphism
τ : X → X/G is a principal G-bundle.

(ii) The points of X/G are given by morphisms of schemes S → X/G
and for any such morphism s : S → X/G have pullback

P
µ //

π

��

X

τ

��
S s // X/G

So, s defines a principal G-bundle π : P → S plus G-equivariant
morphism µ : P → X .
Question: What happens if the action is not free?
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I. Moduli stacks of vector bundles
X = smooth (noetherian) scheme over Fq, G = smooth affine
algebraic group over Fq with an action ρ : G × X → X
[X/G] = quotient stack over smooth site (Sch/Fq)sm

[X/G] : (Sch/Fq)
op → (Groupoids)

▶ (objects) S 7→ [X/G](S) = category with
⋆ objects: principal G-bundles π : P ↓ S together with G-equivariant

morphism µ : P → X
⋆ morphisms: isomorphisms of principal G-bundles commuting with

G-equivariant morphisms
▶ (1-morphism) functors induced by pullbacks of principal G-bundles

bundles, i. e.
(f : S′ → S) 7→ (f ∗ : [X/G](S)→ [X/G](S′))

▶ (2-morphisms) natural isomorphism between pullback functors i. e.
(S′′ g→ S′ f→ S) 7→ (ϵf ,g : g∗ ◦ f ∗ ∼= (f ◦ g)∗)

if X = Spec(Fq), i.e. point with trivial G-action, then [Spec(Fq)/G]
is classifying stack BG of all principal G-bundles
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I. Moduli stacks of vector bundles
Theorem
[X/G] is an algebraic stack.

Proof.
Construction of atlas x . Trivial G-bundle G × X ↓ X with action
ρ : G × X → X gives object in groupoid [X/G](X ), i. e. defines a
morphism of stacks x : X → [X/G].
Properties of x . For any S and any s : S → [X/G] let π : P ↓ S
be the corresponding principal G-bundle with G-equivariant
morphism µ : P → X , then S ×[X/G] X ∼= P. x surjective, smooth,
because π surjective, smooth for every s.

P µ //

π
��

X

x
��

S s // [X/G]



I. Moduli stacks of vector bundles
Theorem
[X/G] is an algebraic stack.

Proof.
Construction of atlas x . Trivial G-bundle G × X ↓ X with action
ρ : G × X → X gives object in groupoid [X/G](X ), i. e. defines a
morphism of stacks x : X → [X/G].

Properties of x . For any S and any s : S → [X/G] let π : P ↓ S
be the corresponding principal G-bundle with G-equivariant
morphism µ : P → X , then S ×[X/G] X ∼= P. x surjective, smooth,
because π surjective, smooth for every s.

P µ //

π
��

X

x
��

S s // [X/G]



I. Moduli stacks of vector bundles
Theorem
[X/G] is an algebraic stack.

Proof.
Construction of atlas x . Trivial G-bundle G × X ↓ X with action
ρ : G × X → X gives object in groupoid [X/G](X ), i. e. defines a
morphism of stacks x : X → [X/G].
Properties of x . For any S and any s : S → [X/G] let π : P ↓ S
be the corresponding principal G-bundle with G-equivariant
morphism µ : P → X , then S ×[X/G] X ∼= P. x surjective, smooth,
because π surjective, smooth for every s.

P µ //

π
��

X

x
��

S s // [X/G]



I. Moduli stacks of vector bundles
X/Fq = smooth projective curve of genus g over the field Fq

Bunn,d
X = moduli stack of vector bundles of rank n and degree d

on X over the smooth site (Sch/Fq)sm of schemes over Spec(Fq)

Bunn,d
X : (Sch/Fq)

op → (Groupoids)

▶ (objects) S 7→ Bunn,d
X (S) = category with

⋆ objects: vector bundles (= locally free sheaves) E ↓ X × S of rank n
and degree d on X × S

⋆ morphisms: vector bundle isomorphisms
▶ (1-morphisms) functors induced by pullbacks of vector bundles

(f : S′ → S) 7→ (f ∗ : Bunn,d
X (S)→ Bunn,d

X (S′))
▶ (2-morphisms) natural isomorphisms between pullback functors

(S′′ g→ S′ f→ S) 7→ (ϵf ,g : g∗ ◦ f ∗ ∼= (f ◦ g)∗

Theorem

Bunn,d
X is an algebraic stack, smooth and locally of finite type.
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I. Moduli stacks of vector bundles
Question: Why using the language of algebraic stacks?

Moduli problem for vector bundles has no fine solution in
schemes, but in stacks, i.e. the functor Bunn,d

X is representable in
stacks. i.e. there is an equivalence of categories for any scheme
S over Fq

Bunn,d
X (S) ∼= HomStacks(S,Bunn,d

X )

where S := HomSch/Fq (−,S) is the stack associated to S.
(2-Yoneda Lemma)
There exists a universal vector bundle Euniv ↓ X × Bunn,d

X s. th.
for any vector bundle F ↓ X × S there is a morphism of stacks

φ : S → Bunn,d
X

s. th. F is given via the pullback

F ∼= (idX × φ)∗(Euniv )
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II. Cohomology of moduli stacks of vector bundles

Question: How to define cohomology of an algebraic stack X?
General formalism for cohomology of stacks:
Deligne-Mumford, Behrend, Laumon-Moret-Bailly, Laszlo-Olsson ...

Xsm = smooth site of an algebraic stack X i. e.
objects: smooth morphism X → X with X a scheme
morphisms: commutative diagrams

X //

��?
??

??
??

? Y

����
��
��
��

X

coverings: smooth coverings of the schemes
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II. Cohomology of moduli stacks of vector bundles
F = sheaf on Xsm is given by

for each atlas x : X → X a sheaf FX on X
for each commutative diagram

X f //

x ��?
??

??
??

? Y

y����
��
��
��

X

an isomorphism
φf : FX

∼=→ f ∗FY

satisfying cocycle condition for 3 morphisms X f→ Y
g→ Z

φg◦f = φf ◦ f ∗φg : FX
∼=→ (g ◦ f )∗FZ

∼= f ∗(g∗FZ )

(X,OX) is a ringed site with structure sheaf OX given by assembly of
structure sheaves OX on atlas x : X → X
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II. Cohomology of moduli stacks of vector bundles

Let F be sheaf of abelian groups on the site Xsm. The global sections
are defined as:

Γ(X,F) := lim←− Γ(X ,F|X )

where the limit is taken over all atlases x : X → X.

Definition
The smooth cohomology of the algebraic stack X with respect to a
sheaf F of abelian groups on the smooth site Xsm is defined as

H i
sm(X,F) := R iΓ(X,F)
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II. Cohomology of moduli stacks of vector bundles
Let X• = {Xi}i≥0 be the associated simplicial scheme with

Xi := X ×X X ×X · · · ×X X
get spectral sequence

Ep,q
1
∼= Hp

sm(Xq,F|Xq )⇒ Hp+q
sm (X,F)

Let X be an algebraic stack over the field Fq with base change
extension

X = X×Spec(Fq) Spec(Fq)

Definition
The l-adic cohomology of the algebraic stack X over Fq is defined as

H∗sm(X,Ql) := lim
←

H∗sm(X̄,Z/lmZ)⊗Zl Ql

We will analyze: H∗sm(Bun
n,d
X ,Ql) = lim←−H∗sm(Bun

n,d
X ,Z/lmZ)⊗Zl Ql
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II. Cohomology of moduli stacks of vector bundles

Theorem (Weil, Deligne)
Let X be a smooth projective curve of genus g over Fq. Then:

H0
sm(X ;Ql) = Ql · 1

H1
sm(X ;Ql) =

⊕2g
i=1 Ql · αi

H2
sm(X ;Ql) = Ql · [X ]

H i
sm(X ;Ql) = 0, if i ≥ 3

where [X ] is the fundamental class and the αi are eigenclasses under
the action of the geometric Frobenius morphism

F
∗
X : H∗sm(X ;Ql)→ H∗sm(X ;Ql)

given as:
F
∗
X (1) = 1

F
∗
X ([X ]) = q[X ]

F
∗
X (αi) = λiαi (i = 1,2, . . .2g)

where λi ∈ Ql algebraic with |λi | = q1/2 for any embedding of λi in C.



II. Cohomology of moduli stacks of vector bundles

BGLn = classifying stack of all rank n vector bundles

BGLn : (Sch/Fq)→ (Groupoids)

with S 7→ BGLn(S) = category with

▶ objects: vector bundles E ↓ S of rank n on S
▶ morphisms: vector bundle isomorphisms

BGLn := BGLn ×Spec(Fq) Spec(Fq) with geometric Frobenius
F
∗
BGLn : H∗sm(BGLn;Ql)→ H∗sm(BGLn;Ql)

Theorem (Behrend (’93))
There is an isomorphism of graded Ql -algebras

H∗sm(BGLn;Ql) ∼= Ql [c1, . . . cn]
and the absolute geometric Frobenius F

∗
BGLn acts as

F
∗
BGLn(ci) = qici (i ≥ 1)
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II. Cohomology of moduli stacks of vector bundles

universal bundle Euniv ↓ X × Bun
n,d
X gives morphism of stacks

u : X × Bun
n,d
X → BGLn

and has Chern classes

ci(Euniv ) = u∗(ci) ∈ H2i
sm(X × Bun

n,d
X ;Ql)

Have Künneth decomposition of characteristic classes

ci(Euniv ) = 1⊗ ci +

2g∑
j=1

αj ⊗ a(j)
i + [X ]⊗ bi−1

where ci ∈ H2i
sm(Bun

n,d
X ;Ql), a(j)

i ∈ H2i
sm(Bun

n,d
X ;Ql) and

bi−1 ∈ H2(i−1)
sm (Bun

n,d
X ;Ql) are the Atiyah-Bott classes.
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II. Cohomology of moduli stacks of vector bundles
Theorem (Harder-Narasimhan (’72), Atiyah-Bott (’82), N.-Stuhler
(’05), Heinloth-Schmitt (’10))
There is an isomorphism of graded Ql -algebras

H∗sm(Bun
n,d
X ;Ql) ∼= Ql [c1, . . . , cn,b1, . . . ,bn]⊗

⊗ΛQl (a
(1)
1 , . . . ,a(2g)

1 , . . . ,a(1)
n , . . . ,a(2g)

n )

Proof. (Steps).

(1) Show that H∗sm(Bun
n,d
X ;Ql) contains graded Ql -algebra of RHS via

induction over rank and reduction to closed substacks of vector
bundles being direct sums of line bundles.

(2) Calculate Poincaré series of the stack Bun
n,d
X by ”stackifying”

[Bifet-Ghione-Letizia (’94)]: Bun
n,d
X is quasi-isomorphic with a

certain ind-scheme Div
n,d

representing a moduli functor of
effective divisors on X
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II. Cohomology of moduli stacks of vector bundles
(1) Induction over the rank.
Let n = 1. Bun1,d

X moduli stack of line bundles of degree d .

Bun1,d
X has coarse moduli space Picd

X and we get a Gm-gerbe
Bun1,d

X → Picd
X .

Ramanan (’73), Drezet-Narasimhan (’89): There exists a Poincaré
family on X × Picd

X and a splitting Bun1,d
X
∼= Picd

X ×BGm.

Künneth decomposition gives:

H∗sm(Bun
1,d
X ,Ql) ∼= H∗sm(Pic

d
X ,Ql)⊗ H∗sm(BGm,Ql)

∼= ΛQl (a
(1)
1 , . . . ,a(2g)

1 )⊗Ql [c1].

because have

H∗sm(Pic
d
X ,Ql) ∼= H∗sm(Jac(X ),Ql) ∼= ΛQl (H

1
et(X ,Ql)).
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II. Cohomology of moduli stacks of vector bundles
Let n > 1. Take arbitrary partition of rank d

d =
n∑

i=1

di , di ∈ Z; d = (d1, . . . ,dn)

and analyze

⊕d :
n∏

i=1

Bun1,di
X → Bunn,d

X , (Li) 7→ L1 ⊕ . . .⊕ Ln.

and (⊕d)
∗ and use that Chern classes of direct sums of line bundles

are expressed as elementary symmetric polynomials.

Get a commutative diagram

H∗sm(Bun
n,d
X ;Ql) //

∏
d Ql [C1, . . .Cn]⊗

⊗n,2g
i,j ΛQl (A

(j)
i )

Ql [ci ]⊗Ql [a
(j)
i ]⊗Ql [bi ]

α

OO

φ // Ql [Ci ]⊗Ql [A
(j)
i ]⊗ Ql [D1,...Dn]

(
∑

s Ds−d )

ψ

OO
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II. Cohomology of moduli stacks of vector bundles
(2) ”Stackify” approach of Biffet-Ghione-Letizia.

Λ = poset of effective divisors on X . For any D ∈ Λ have moduli
functor

Divn,d(D) : (Sch/Fq)→ (Sets)

where
Divn,d(D)(S) = equivalence classes of inclusions F ↪→ OX×S(D)n

with F family of rank n and degree d bundles on X × S
Divn,d(D) representable by a Quot scheme Divn,d(D)

Quot schemes Divn,d(D) assemble to ind-scheme Divn,d

There is a morphism of algebraic stacks

Divn,d(D)→ Bunn,d
X

inducing a morphism Divn,d → Bunn,d
X and an isomorphism

H i
sm(Bun

n,d
X ;Ql) ∼= H i

sm(Div
n,d

;Ql)
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III. Frobenii and moduli stacks of vector bundles
Induced geometric Frobenius morphism
X = smooth projective curve of genus g over the field Fq

FX : (X ,OX )→ (X ,OX ),FX := (idX , f 7→ f q)
X = X ×Spec(Fq) Spec(Fq) base change

F X = FX × idSpec(Fq)
: X → X

Get functor via pullback along F X

Bun
n,d
X (S)→ Bun

n,d
X (S), E 7→ F

∗
(E) := (F X × idS)

∗(E)

inducing endomorphism of stacks

φ : Bun
n,d
X → Bun

n,d
X

inducing endomorphism in cohomology

Φ = φ∗ : H∗sm(Bun
n,d
X ;Ql)→ H∗sm(Bun

n,d
X ;Ql)
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III. Frobenii and moduli stacks of vector bundles

Proposition (Naturality)
There is a canonical isomorphism

(F X × id
Bun

n,d
X
)∗(Euniv ) ∼= (idX × φ)

∗(Euniv )

Proof.
For any stack T /Fq a vector bundle E of rank n and degree d on X ×T
is given by morphism of stacks

u : T → Bun
n,d
X

s. th. E ∼= (idX × u)∗(Euniv ).

Apply this to the vector bundle (F X × id
Bun

n,d
X
)∗(Euniv ).
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III. Frobenii and moduli stacks of vector bundles
Theorem (N.-Stuhler (’05), Castorena-N. (’24))

The induced geometric Frobenius Φ = φ∗ acts on H i
sm(Bun

n,d
X ;Ql) as

follows:
φ∗(ci) = ci (i ≥ 1)

φ∗(a(j)
i ) = λja

(j)
i (i ≥ 1; j = 1, . . . ,2g)

φ∗(bi) = qbi (i ≥ 1)

Proof. (Ingredients).
Use functoriality of Chern classes, i.e. get

(F X × id
Bun

n,d
X
)∗(ci(Euniv )) = (idX × φ)

∗(ci(Euniv ))

Use Künneth decomposition for ci(Euniv ), structure of
H∗sm(Bun

n,d
X ;Ql) and action of geometric Frobenius F

∗
X on

H∗sm(X ;Ql) to evaluate the expressions on both sides.
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Use Künneth decomposition for ci(Euniv ), structure of
H∗sm(Bun

n,d
X ;Ql) and action of geometric Frobenius F

∗
X on

H∗sm(X ;Ql) to evaluate the expressions on both sides.



III. Frobenii and moduli stacks of vector bundles
Theorem (N.-Stuhler (’05), Castorena-N. (’24))

The induced geometric Frobenius Φ = φ∗ acts on H i
sm(Bun

n,d
X ;Ql) as

follows:
φ∗(ci) = ci (i ≥ 1)

φ∗(a(j)
i ) = λja

(j)
i (i ≥ 1; j = 1, . . . ,2g)

φ∗(bi) = qbi (i ≥ 1)

Proof. (Ingredients).
Use functoriality of Chern classes, i.e. get

(F X × id
Bun

n,d
X
)∗(ci(Euniv )) = (idX × φ)

∗(ci(Euniv ))
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III. Frobenii and moduli stacks of vector bundles

Absolute geometric Frobenius morphism
(Bunn,d

X ,OBunn,d
X
) algebraic stack with structure sheaf

Get endomorphism of stacks

FBunn,d
X

: (Bunn,d
X ,OBunn,d

X
)→ (Bunn,d

X ,OBunn,d
X
)

and its base change extension

F Bunn,d
X

:= FBunn,d
X
× idSpec(Fq)

inducing endomorphism in cohomology

F
∗
Bunn,d

X
: H∗sm(Bun

n,d
X ;Ql)→ H∗sm(Bun

n,d
X ;Ql)



III. Frobenii and moduli stacks of vector bundles

Arithmetic Frobenius morphism
Classical Frobenius morphism, i. e. generator of the Galois group
Gal(Fq/Fq)

Frob : Fq → Fq, a 7→ aq

Get endomorphism of schemes

FrobSpec(Fq)
: Spec(Fq)→ Spec(Fq)

inducing endomorphism of stacks

ψ := idBunn,d
X
× FrobSpec(Fq)

: Bun
n,d
X → Bun

n,d
X

inducing endomorphism in cohomology

Ψ = ψ∗ : H∗sm(Bun
n,d
X ;Ql)→ H∗sm(Bun

n,d
X ;Ql)



III. Frobenii and moduli stacks of vector bundles
Theorem (N.-Stuhler (’05), Castorena-N. (’24))

The absolute geometric Frobenius F
∗
Bunn,d

X
acts on H i

sm(Bun
n,d
X ;Ql) as

follows:
F
∗
Bunn,d

X
(ci) = qici (i ≥ 1)

F
∗
Bunn,d

X
(a(j)

i ) = λ−1
j qia(j)

i (i ≥ 1; j = 1, . . . ,2g)

F
∗
Bunn,d

X
(bi) = qi−1bi (i ≥ 1)

Proof. (Ingredients).

Ẽuniv ↓ BGLn = universal bundle
Euniv ↓ X × Bunn,d

X = universal bundle with classifying morphism
u : X × Bunn,d

X → BGLn with u∗(Ẽuniv ) ∼= Euniv

FBGLn ◦ u = u ◦ FX×Bunn,d
X

F
∗
X×Bunn,d

X
(ci(u∗(Ẽuniv ))) = (F X× id

Bun
n,d
X
)∗(idX×F Bunn,d

X
)∗(ci(Euniv ))
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III. Frobenii and moduli stacks of vector bundles

Theorem (N.-Stuhler (’05), Castorena-N. (’24))

The absolute arithmetic Frobenius Ψ = ψ∗ acts on H i
sm(Bun

n,d
X ;Ql) as

follows:
ψ∗(ci) = q−ici (i ≥ 1)

ψ∗(a(j)
i ) = λjq−ia(j)

i (i ≥ 1; j = 1, . . . ,2g)
ψ∗(bi) = q−i+1bi (i ≥ 1)

Proof. (Ingredients).
This follows from the calculations for the absolute geometric Frobenius
as the absolute arithmetic Frobenius morphism ψ∗ is inverse to the
absolute geometric Frobenius morphism F

∗
Bunn,d

X
.
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III. Frobenii and moduli stacks of vector bundles
Definition
The cardinality of a groupoid G = [G1 ⇒ G0] is the real number

#G =
∑
x∈[G]

1
#AutG(x)

,

where the sum is taken over isomorphism classes of objects x of G and
#AutG(x) is the order of the automorphism group of the object x . If this
sum diverges we say #G =∞.

Example: Let X be a finite set and G = [X ⇒ X ] be the associated
groupoid. Then:

#G =
∑
x∈X

1 = #X .

Example: Let G be a finite group and BG = [G ⇒ ∗] be the associated
groupoid. Then:

#BG =
1

#G
.
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III. Frobenii and moduli stacks of vector bundles
Example: Let a finite group G act on a finite set X and
X//G = [G × X ⇒ X ] be the action groupoid. We have:

#X//G =
∑

x∈[X//G]

1
#AutX//G(x)

=
#X
#G

.

We have BG = [∗//G]. X//G is a good replacement for the quotient
X/G when the action is not free!
Example: Let G = FinSets be the groupoid of all finite sets and
bijections. Then:

#G =
∑
x∈[G]

1
#AutG(x)

=
∑
n∈N0

1
#Sn

=
∑
n∈N0

1
n!

= e,
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III. Frobenii and moduli stacks of vector bundles
X = algebraic stack over Sch/S, U object of Sch/S. Let [X(U)] be
the set of isomorphism classes of objects in the groupoid X(U)
and the groupoid cardinality

#X(U) :=
∑

x∈[X(U)]

1
#AutX(U)(x)

X/X = atlas of X i. e. representable smooth surjective morphism
x : X → X. The dimension of X is defined as

dim(X) = dim(X )− rel. dim(X/X)

with rel. dim(X/X) = dimenson of fibers of X ×X Y → Y for any
Y → X

Example. [X/G] =quotient stack, then
dim([X/G]) = dim(X )− dim(G)

BG = classifying stack, then dim(BG) = − dim(G)

Bunn,d
X = moduli stack of bundles, then dim(Bunn,d

X ) = n2(g − 1)
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III. Frobenii and moduli stacks of vector bundles

Theorem (Lefschetz trace formula (Behrend ’03))
Let X be a smooth algebraic stack and Ψ be the arithmetic Frobenius,
then have

qdim(X)
∑
p≥0

(−1)ptr(Ψ|Hp
sm(X;Ql)) =

∑
x∈[X(Spec(Fq))]

1
#AutX(Spec(Fq))(x)

Here ∑
x∈[X(Spec(Fq))]

1
#AutX(Spec(Fq))(x)

= #X(Spec(Fq))

is the number of Fq-rational points of the algebraic stack X, where
#AutX(Spec(Fq))(x) is the order of the group of automorphisms of the
isomorphism class x . It is the groupoid cardinality of the groupoid
X(Fq) = X(Spec(Fq)) of Fq-rational points of the stack X.
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III. Frobenii and moduli stacks of vector bundles
Example. BGm = classifying stack of line bundles
The quotient morphism π : An − {0} → Pn−1 is a principal Gm-bundle

An − {0} //

π
��

Spec(Fq)

��
Pn−1 ϕ // BGm

The fiber of π is An − {0} and have Leray spectral sequence

Ep,q
2
∼= Hp

sm(BGm,Rqϕ∗Ql)⇒ H∗sm(P
n−1

,Ql)

and because R0ϕ∗Ql
∼= Ql and Rqϕ∗Ql = 0 if q < 2n − 1 it follows for

q < 2n − 1 that
Hq

sm(BGm,Ql) ∼= Hq
sm(P

n−1
,Ql)

and therefore
H∗sm(BGm,Ql) ∼= Ql [c1]

where c1 is generator of degree 2 given as Chern class of the
universal line bundle Luniv on BGm.
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III. Frobenii and moduli stacks of vector bundles
dim(BGm) = − dim(Gm) = −1

#BGm(Fq) = #line bundles (up to iso) over ”point” Spec(Fq)
all line bundles over the ”point” Spec(Fq) are trivial, i.e. there is just
one iso class x in BGm(Spec(Fq))
#AutBGm(Spec(Fq))(x) = #Gm(Fq) = #F∗q = q − 1 i.e.

#BGm(Fq) =
∑

x∈[BGm(Spec(Fq))]

1
#AutBGm(Spec(Fq))(x)

=
1

q − 1
.

cohomology of BGm is cohomology of ”infinite projective space”,
i.e.

qdim(BGm)
∑
i≥0

tr(Ψ|H2i
sm(BGm;Ql)) =

1
q

∞∑
i=0

1
qi

so get well known formula via ”stacky” proof
∞∑

i=0

1
qi+1 =

1
q − 1
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III. Frobenii and moduli stacks of vector bundles

For the zeta function of BGm we therefore get:

ZBGm(t) =

exp(
∞∑

i=1

#BGm(Fqi )
t i

i
) = exp(

∞∑
i=1

1
qi − 1

t i

i
)

= exp(
∞∑

i=1

t i

i

∞∑
k=1

1
qki ) =

∞∏
k=1

exp(
∞∑

i=1

(t/qk )i

i
)

=
∞∏

k=1

(1− q−k t)−1.

ZBGm(t) has a meromorphic continuation to the complex plane with
simple poles at t = qk for k ≥ 1.

Exercise: Calculate the zeta function for the classifying stack BGLn of
all rank n vector bundles!
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Theorem (Weil Conjectures, Part I, N. (’24))
Let X be a smooth projective curve of genus g over Fq, αi the
eigenvalues of the geometric Frobenius on H1

sm(X ;Ql). Then:

(1) The number of Fq-rational points of Bunn,d
X is

#Bunn,d
X (Fq) = qn2(g−1)

∏n
i=1

∏2g
j=1(1− αjq−i)∏n

i=1(1− q−i)
∏n

i=2(1− q−i+1)

(2) The ζ− function ZBunn,d
X
(t) = exp(

∑∞
i=1 #Bunn,d

X (Fqi ) t i

i ) is a
meromorphic function with convergent product expansion

ZBunn,d
X
(t) =

∞∏
i=1

det(1−Ψqdim(Bunn,d
X )t |H i

sm(Bun
n,d
X ;Ql))

(−1)i+1



III. Frobenii and moduli stacks of vector bundles

Theorem (Weil Conjectures, Part I, N. (’24))
Let X be a smooth projective curve of genus g over Fq, αi the
eigenvalues of the geometric Frobenius on H1

sm(X ;Ql). Then:

(1) The number of Fq-rational points of Bunn,d
X is

#Bunn,d
X (Fq) = qn2(g−1)

∏n
i=1

∏2g
j=1(1− αjq−i)∏n

i=1(1− q−i)
∏n

i=2(1− q−i+1)

(2) The ζ− function ZBunn,d
X
(t) = exp(

∑∞
i=1 #Bunn,d

X (Fqi ) t i

i ) is a
meromorphic function with convergent product expansion

ZBunn,d
X
(t) =

∞∏
i=1

det(1−Ψqdim(Bunn,d
X )t |H i

sm(Bun
n,d
X ;Ql))

(−1)i+1



III. Frobenii and moduli stacks of vector bundles

Theorem (Weil Conjectures, Part I, N. (’24))
Let X be a smooth projective curve of genus g over Fq, αi the
eigenvalues of the geometric Frobenius on H1

sm(X ;Ql). Then:

(1) The number of Fq-rational points of Bunn,d
X is

#Bunn,d
X (Fq) = qn2(g−1)

∏n
i=1

∏2g
j=1(1− αjq−i)∏n

i=1(1− q−i)
∏n

i=2(1− q−i+1)

(2) The ζ− function ZBunn,d
X
(t) = exp(

∑∞
i=1 #Bunn,d

X (Fqi ) t i

i ) is a
meromorphic function with convergent product expansion

ZBunn,d
X
(t) =

∞∏
i=1

det(1−Ψqdim(Bunn,d
X )t |H i

sm(Bun
n,d
X ;Ql))

(−1)i+1



III. Frobenii and moduli stacks of vector bundles
Proof. (Ingredients).
(1) is variation of a calculation by [Harder-Narasimhan (’72)] using

Lefschetz trace formula of arithmetic Frobenius Ψ for algebraic
stacks X [Behrend (’03)]

qdim(X)
∑
p≥0

(−1)ptr(Ψ|Hp
sm(X;Ql)) =

∑
x∈[X(Fq)]

1
#AutX(Fq)(x)

where for X = Bunn,d
X have dim(Bunn,d

X ) = n2(g − 1)

(2) Product expansion of ζ-function is proved by [Behrend (’93)] for
algebraic stacks X of finite type using Lefschetz trace formula.

▶ Bunn,d,≤p
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Proof. (Ingredients).
(2) (contin.)
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Theorem (Weil Conjectures, Part II, N. (’24))
(3) The eigenvalues of the arithmetic Frobenius Ψ acting on

H i
sm(Bun

n,d
X ;Ql) have absolute value qi/2 and the Poincaré series

of H∗sm(Bun
n,d
X ;Ql) is given as:

PBunn,d
X
(t) =

∏n
i=1(1 + t2i−1)2g∏n

i=1(1− t2i)
∏n

i=2(1− t2i−2)

Proof. (Ingredients).

(3) uses reduction to ”nice” covering substacks of Bunn,d
X looking

locally like quotient stacks [Z/Gm] having the desired properties
for the arithmetic Frobenius Ψ and Leray spectral sequence

Ep,q
2
∼= Hp

sm(BGm;Ql)⊗ Hq
sm(Z ,Ql)⇒ Hp+q

sm ([Z/Gm];Ql).
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Proposition
The formal trace

tr(Φr ×Ψs|H∗sm(Bun
n,d
X ;Ql)) =

∑
p≥0

(−1)ptr(Φr ×Ψs|Hp
sm(Bun

n,d
X ;Ql))

is absolutely convergent for s > r .

Proof.
The formal trace is given by:

(
n∏

i=1

(
∞∑

n=0

q−is)) · (
n−1∏
k=1

(
∞∑

m=0

qm(r−ks))) · (
2g∏
j=1

n∏
i=1

(1 + |λj |r+sq−is)



III. Frobenii and moduli stacks of vector bundles

Proposition
The formal trace

tr(Φr ×Ψs|H∗sm(Bun
n,d
X ;Ql)) =

∑
p≥0

(−1)ptr(Φr ×Ψs|Hp
sm(Bun

n,d
X ;Ql))

is absolutely convergent for s > r .

Proof.
The formal trace is given by:

(
n∏

i=1

(
∞∑

n=0

q−is)) · (
n−1∏
k=1

(
∞∑

m=0

qm(r−ks))) · (
2g∏
j=1

n∏
i=1

(1 + |λj |r+sq−is)
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for r = 0, s = 1 there is Lefschetz Trace Formula of [Behrend]

consider Bun2,0
P1 i. e. rank 2 bundles on P1 with trivial determinant

H∗sm(Bun
2,0
P1 ;Ql) ∼= Ql [c2,b1]

with c2 ∈ H4
sm(Bun

2,0
P1 ;Ql), b1 ∈ H2

sm(Bun
2,0
P1 ;Ql). Then:

tr(Φr ×Ψs|H∗sm(Bun
2,0
P1 ;Ql) = (

∞∑
m=0

q−2sm) · (
∞∑

m=0

q(r−s)m)

absolutely convergent for s > r , i. e. for s > r

tr(Φr ×Ψs|H∗sm(Bun
2,0
P1 ;Ql) = (1− q−2s)−1 · (1− qr−s)−1
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III. Frobenii and moduli stacks of vector bundles
Fixed points of Φr ×Ψs

(Bun
2,0
P1 )Φ

r×Ψs
= (Bunss2,0

P1 )Φ
r×Ψs

= (BSL2)
Ψs

where Bunss2,0
P1 is the open substack of semistable bundles

Fixed point stack does not depend on r , so naive fixed point
formula fails!

Open Questions.
Is there a modified trace formula for the composition Φr ×Ψs if
s > r? What does it ”count” geometrically?
Are there analogs of the Weil Conjectures for the geometric
Frobenii Φ and F

∗
Bunn,d

X
?

Are there analogs of the Weil Conjectures for the absolute
Frobenii Φ or FX on general algebraic stacks X over Fq
(for algebraic stacks smooth, locally of finite type...)?
(work in progress, see also work by Sun (2010))
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